Design Model: Determining
Visibility

CH-18

Objectives

* |dentify four kinds of visibility.
e Design to establish visibility.

e ||lustrate kinds of visibility in the UML
notation.

* Visibility is the ability of one object to see or
have reference to another.

Visibility Between Objects

* The designs created for the system events

(enterltem, etc.) illustrate messages between
objects.

* For a sender object to send a message to a

receiver object, the sender must be visible to
the receiver

 the sender must have some kind of reference
or pointer to the receiver object.

Visibility Between Objects

* For example, the
addLineltem(itemID, quantity) getSpecification message
l sent from a Register to a
ProductCatalog implies that
the ProductCatalog instance
is visible to the Register

1: spec = getJpecification(itemID Iinstance

‘Register

.ProductCatalog

Visibility Between Objects

* The UML has special notation for illustrating
visibility

 When creating a design of interacting objects,
it is necessary to ensure that the necessary

visibility is present to support message
interaction

Visibility

There are four common ways that visibility can be
achieved from object A to object B:

Attribute visibility—B is an attribute of A.

Parameter visibility—B is a parameter of a
method of A.

Local visibility—B is a (hon-parameter) local
object in a method of A.

Global visibility—B is in some way globally
visible.

Attribute Visibility

* Attribute visibility from A to B exists when B is
an attribute of A.

* |tis arelatively permanent visibility because it
persists as long as A and B exist.

* This is a very common form of visibility in
object-oriented systems.

Attribute Visibility

For ex. in a Java class definition for This visibility is required because in

Register, a Register instance may have the enterltem diagram , a Register

attribute visibility to a ProductCatalog, needs to send the getSpecification

smrfe it is an attnbufe (Java instance message to a ProductCatalog:

variable) of the Register. .
L E}uul-c void enteritem/itemiD, gty)

class Register

spec = .l:.atalag get3pecification(itemID)

public class Register

{ private ProductCatalog catalogu.eeqsssesssrssres el
E }

i ;)

private ProductCatalog catalog;

T .:Eggijtgr| . ProductCatal

enterltem
H (itemiD. quantity) |

spec = getSpecification] temiD)

T

Parameter Visibility

* Parameter visibility from A to B exists when B
is passed as a parameter to a method of A.

* |tis a relatively temporary visibility because it
persists only within the scope of the method.

* After attribute visibility, it is the second most
common form of visibility in object-oriented
systems.

Parameter Visibility

entertlemsi, oly) —» 2 makeLneltamisper, otyi—»

Renster Sk
1: 506t =-;]E{Ei|:E:i‘!iEF.'iﬂ-'I[i:|.l
11: vregtajspec, gy
Produ! !
Catalog
! N i

mateLireltem Product Spectication spec, int ofy)
1

s/ = new SalssLingllemispec, iyl

I
I

Figura 18 3 Parameter visiblury

when the makelineltem
message is sent to a Sale
Instance, a
ProductSpecification
instance is passed as a
parameter. Within the
scope of the makelLineltem
method, the Sale has
parameter visibility to a
ProductSpecification (see
Figure 18.3).

Parameter Visibility

* |tis common to transform parameter visibility
into attribute visibility.

Parameter to attributeVisibility

enierliem{id, qty) —»

2 spec = petSpecificalion(d)

2: makeLineltem{spec, qty) —»

Regater |

WO LY createdspec gy

Froguc]]
[ataing
' 5l - SalesLineltem
il mitiahzng method {2.9.. & Java consiructor) L

SalesUngltemiProductSpec fication spec. it oty

productSpec = spec; i/ parameter 1o atinbute visibility

Figure 8.4 Parameter to attribute vistbilty.

when the Sale creates a new
SalesLineltem, it passes a

ProductSpecifi-cation in to
its initializing method (in
C++ or Java, this would

be its constructor). Within
the initializing method,
the parameter is assigned

to an attribute, thus
establishing attribute
visibility (Figure 18.4).

Local Visibility

* Local visibility from A to B exists when B is
declared as a local object within a method of A.

* |tis a relatively temporary visibility because it
persists only within the scope of the method.

* After parameter visibility, it is the third most
common form of visibility in object-oriented
systems.

Local Visibility

* Two common means by which local visibility is
achieved are:

* Create a new local instance and assign it to a
local variable.

* Assign the returning object from a method
invocation to a local variable.

Local Visibility

{
enterltem(id, qty)
{

/[l local visibility via assignment of returning object
ProductSpecification spec = catalog.getSpecification(id):

}

o*’

anterlt - Register : ProductCatalog
ritem

(itemlD, quantity)

’I_r spec = getSpecification(itemID) =

Figure 18.5 Local visibility.

Global Visibility

* Global visibility from A to B exists when B is
global to A.

* |tis arelatively permanent visibility because it
persists as long as A and B exist.

* |tisthe least common form of visibility in
object-oriented systems.

Global Visibility

* One way to achieve global visibility is to assign
an instance to a global variable, which is
possible in some languages, such as C++, but
not others, such as Java.

lllustrating Visibility in the UML
Collaboration diagram (optional)

«association» is used for
attribute visibility

A 1: msg() ™™ _ B

«association»

2: msg()—»

g &« ‘-Q'

parametern

3: msg() —=

«local» £
4: msg() —» i
«global» =

Figure 18.6 Implementation stereotypes for visibility.

